Variance and Standard Deviation in Statistics

Spread the love
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

Variance is one of the best measure of dispersion which measure the difference of all observation from the center value of the observations.

 
 
 

Population variance and standard deviation

The average of the square of the deviations taken from mean is called variance. The population variance is generally denoted by σ2and its estimate (sample variance) by s2. For N population values X1,X2,…,XN having the population mean μ, the population variance is defined as,
 
population variance formula
 
Where,  μ is the mean of all the observations in the population and N is the total number of observations in the population. Because the operation of squaring, the variance is expressed in square units and not of the original units.
 
So, we can define the population standard deviation as,
 
standard deviation formula
 
Thus, the standard deviation is the positive square root of the mean square deviations of the observations from their arithmetic mean. More simply, standard deviation is the positive square root of σ2.
 

Sample variance

In maximum statistical applications, we deal with a sample rather than a population. Thus, while a set of population observations yields a σ2 and a set of sample observations will yield a s2. If x1,x2,…,xn is a set of sample observations of size n, then the s2 is define as,
 
sample variance formula

Properties

Effect of changes in origin: Variance and statndard deviation have certain appealing properties. Let each of the numbers x1,x2,…,xn increases or decreases by a constant c. Let y be the transformed variable defined as,
 
 
where, c is a constant.
Finally we get that any linear change in the variable x does not have any effect on its σ2. So, σ2 is independent of change of origin.
 
Effect of changes in the scale: When each observation of the variable is multiplied or divided by a certain constant c then there occur changes in the σ2.
 
scale
 
So, we can say that, Changes in scale affects and it depends on scale.
 
 

Uses of Variance and standard deviation

A thorough understanding of the uses of standard deviation is difficult for us as this stage, unless we acquire some knowledge on some theoritical distributions
in statistics. The variance and standard deviation of a population is a measure of the dispersion in the population while the variance and standard deviation of sample observations is a measure of the dispersion in the distribution constructed from the sample. It can be the best understood with reference to a normal distribution because normal distribution is completely defined by mean and standard deviation.

 

Leave a Reply

Your email address will not be published. Required fields are marked *

Releated

Data Levels of Measurement (Nominal, Ordinal, Interval, Ratio) in Statistics

Spread the love
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

Spread the love          Data levels in statistics indicates the measurement levels in statistics. In statistics, the statistical data whether qualitative or quantitative, are generated or obtain through some measurement or some observational process. Measurement is essentially the task of assigning numbers to observations according to certain rules. The way in which the numbers are assigned to […]

Correlation Analysis definition, formula and step by step procedure

Spread the love
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

Spread the love          The relationship between two or more random variables are generally defined as the correlation. It is the major part of bivariate analysis. When variables are found to be related, we often want to know how close the relationship is. The study of the relationship is known as correlation analysis. The primary objective of […]

Skewness and Kurtosis in Statistics (shape of distributions)

Spread the love
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

Spread the love          Skewness and kurtosis are two important measure in statistics. Skewness refers the  lack of symetry and kurtosis refers the peakedness of a distribution.    Skewness Literally, skewness means the ‘lack of symmetry’. We study skewness to have an idea about the shape of the curve which we can draw with the help of […]