Correlation Analysis definition, formula and step by step procedure

Spread the love
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

The relationship between two or more random variables are generally defined as the correlation. It is the major part of bivariate analysis. When variables are found to be related, we often want to know how close the relationship is. The study of the relationship is known as correlation analysis. The primary objective of correlation is to measure the strength or degree of linear association between two or more variables.

Example Correlation Analysis

For example, we may be interested in measuring the relationship between the-

  • Height and weight of the people of certain area.
  • Ages of husband and their wives.
  • Amount of rice production and fertilizer.
  • Income and expenditure.
  • Total sales and experience of the sales persons..etc.

Correlation analysis vs Regression analysis

The contradictions between regression and correlation are given below-

  • In correlation, we are generally interested in the measurement of the linear relationship between two or more variables. On the other hand, reg ression analysis
    doesn’t asses such relationship.
  • In correlation analysis we consider any two or more variables. On the otherhand, in regression there must need one dependent and one or more independent variables. Here the dependent variable is stochastic or random variable and the independent or explanatory variable is fixed.
  • Correlation analysis provides a means of measuring the goodness of fit of the estimated regression line to the observed statistical data. On the other hand, regression analysis doesn’t provide any means to measure the goodness of fit but it tells about the average amount of change in the dependent variable to one unit change in the independent variable.

Measuring the Correlation

For n pairs of sample observations (x1,y1), (x2,y2),…,( xn, yn), the correlation coefficient  r can be defined as,

Correlation coefficient r is a statistical measure that quantifies the linear relationship between a pair of variables.

Interpretation of Correlation Coefficient 

The value of correlation coefficient (r) lies between -1 to +1. When the value of –

  • r=0; there is no relation between the variable.
  • r=+1; perfectly positively correlated.
  • r=-1; perfectly negatively correlated.
  • r= 0 to 0.30; negligible correlation.
  • r=0.30 to 0.50; moderate correlation.
  • r=0.50 to 1 highly correlated.

Properties of correlation coefficient

The correlatio coefficient has some appealing properties which are following-

  • The correlation coefficient is a symmetric measure.
  • The value of correlation coefficient lies between -1 to +1.
  • It is dimensionless quantity.
  • It is independent of origin and scale of measurement.
  • The correlation coefficient will be positive or negative depending on whether the sign of numerator of the formula is negative or positive.

Rank Correlation analysis

When the two variables had a joint normal distribution

and the conditional variance of one variable given the other was same then we may use other technique generally known as the rank correlation. Rank correlation is defined by Spearman’s rank correlation. We recommended rank correlation when-

  • The values of the variables are available in rank ordered form.
  • The data are qualititive in nature and can be ranked in some order.
To compute Spearman’s rank correlation  we use the following formula-
 

where,

rs=Spearman’s correlation coefficient

di=The differences between ranks of the ith pair

n= The number of pairs included.

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *

Releated

Data Levels of Measurement (Nominal, Ordinal, Interval, Ratio) in Statistics

Spread the love
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

Spread the love          Data levels in statistics indicates the measurement levels in statistics. In statistics, the statistical data whether qualitative or quantitative, are generated or obtain through some measurement or some observational process. Measurement is essentially the task of assigning numbers to observations according to certain rules. The way in which the numbers are assigned to […]

Skewness and Kurtosis in Statistics (shape of distributions)

Spread the love
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

Spread the love          Skewness and kurtosis are two important measure in statistics. Skewness refers the  lack of symetry and kurtosis refers the peakedness of a distribution.    Skewness Literally, skewness means the ‘lack of symmetry’. We study skewness to have an idea about the shape of the curve which we can draw with the help of […]

Random Variable and its types with properties

Spread the love
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

Spread the love          In statistics, A Random Variable is a set of possible values from a random experiment which is known in advance and the experiment can be repeated underer identical condition. According to Investopedia, “A random variable is a variable whose value is unknown or a function that assigns values to each of an experiment’s […]